化苑讲坛
首页 >> 化苑讲坛 >> 正文

251期

Yang Yang

作者:  发布:2017-04-24 00:00:00  点击量:

 美国中佛罗里达大学Yang Yang教授做客第251期化苑讲坛

 

报告题目:Strengthening of Lightweight Thin-Film Electrodes with Metal-Filaments for Renewable Energy Applications

   Yang Yang

报告时间:2017424日(周一)上午10:00

报告地点:化学楼二楼一号会议室

   :夏宝玉教授

 

报告人简介:

Yang Yang comes from the NanoScience Technology Center, University of Center Florida, US. He studied at Jilin University from 2003 to 2006 and he obtained his PhD degree at Tsinghua University, Beijing, China in January, 2010. During his study at Tsinghua University, his advisor is Prof. Dr. Xiaohui Wang and his dissertation is “Research of TiO2 Nanotube Arrays Based One Dimensional”. His research interests include the Fabrication of nanostructured filmsRenewable energy generation and storageSolar energy harvestingSmart and flexible electronics and Ceramic films for solid state electronics. He got the Peter M. and Ruth L. Nicholas Postdoctoral Fellowship in 2012 and the Alexander von Humboldt Postdoctoral Fellowship in 2010.

 

报告内容:

Metal-filaments strengthened thin-films were rationally designed to serve as freestanding and defective electrodes for renewable energy applications. A transformative nanomanufacturing process was developed to fabricate these thin-film electrodes (mixed oxides of iron group metals) with nanoporous structure and controllable composition in a facile and scalable manner. More specifically, electrodeposition and anodic treatments were employed to produce freestanding and defective NiFe oxides nanoporous layers (NPL). These NPL can be directly used as flexible and additive-free electrodes for renewable energy generation (water splitting) and storage (supercapacitor) applications without using binders, current collector and other additives. Significantly enhanced electrochemical performances were therefore achieved due to the unique merits of these NPL: i) highly porous structure considerably increase the electrode/electrolyte interface, which facilitates the electrochemical reaction; ii) these defective NPL provide a large number of active sites (defects) for electrochemical reactions; iii) residual metal-filaments in the NPL form an interconnected conductive framework, which drastically improves the flexibility and conductivity of the electrode.

 

上一篇:252期
下一篇:250期

版权所有 华中科技大学化学与化工学院 COPYRIGHT 2014-2021
通讯地址:湖北省武汉市洪山区珞喻路1037号华中科技大学西一楼208室
邮编:430074
联系电话:027-58868736
学院邮箱:hustchem@hust.edu.cn

  • 微信公众号